The ideal blood pressure will depend on the underlying cause of the brain edema. In trauma and stroke patients, blood pressure should be maintained at moderate levels, as higher blood pressure has been associated with increased intracranial pressure. In patients with severe trauma, blood pressure should be increased to maintain cerebral perfusion pressure above 60 mmHg. In patients with severe edema, rapid blood pressure reduction is deleterious in the acute phase, and it should be avoided as it can cause brain ischemia. However, once patients are stabilized, blood pressure should be reduced to a target level of 130/80 mmHg to minimize the risk of cerebral edema.

Pharmacologic interventions to reduce cerebral edema and intracranial hypertension include the use of mannitol, hypertonic saline, and osmotic diuretics. Mannitol is a hyperosmolar agent that draws water from the extracellular space, reducing cerebral edema and intracranial pressure. Hypertonic saline is used in a similar manner, but it has been associated with higher rates of adverse effects. Osmotic diuretics such as furosemide and glycerol are also used to reduce intracranial pressure by promoting the movement of water from the brain to the plasma. These interventions are typically used in combination with other therapies to achieve optimal outcomes.

- **Therapies for Hypertension and Hypothyroidism**: Hypertension and hypothyroidism can worsen the symptoms of brain edema and intracranial hypertension. Therefore, it is essential to control these conditions to prevent further complications.

- **Therapies for Cerebral Edema**: The management of cerebral edema involves a combination of medical and surgical interventions. Medical therapies include the use of osmotic diuretics, corticosteroids, and antihypertensives. Surgical interventions include craniotomy and ventriculostomy, typically performed in cases of refractory intracranial hypertension.

- **Therapies for Cerebral Hypoxia**: Hypoxia is a significant contributor to cerebral edema and intracranial hypertension. Therefore, it is crucial to maintain adequate oxygenation to prevent further intracranial pressure increase.

- **Therapies for Cerebral Ischemia**: Ischemia is a common cause of cerebral edema. Therefore, it is essential to maintain adequate blood flow to the brain to prevent further damage.

- **Therapies for Cerebral Inflammation**: Inflammation plays a significant role in the development of cerebral edema. Therefore, anti-inflammatory therapies may be beneficial in reducing edema formation.

- **Therapies for Cerebral Neoplasms**: Neoplasms can cause cerebral edema and intracranial hypertension. Therefore, surgical and radiological interventions are necessary to remove the neoplasm and reduce intracranial pressure.

- **Therapies for Cerebral Trauma**: Cerebral trauma is a common cause of cerebral edema and intracranial hypertension. Therefore, it is essential to maintain adequate blood flow to the brain to prevent further damage.

- **Therapies for Cerebral Metabolic Disorders**: Metabolic disorders, such as hypoglycemia and hyperglycemia, can worsen the symptoms of cerebral edema and intracranial hypertension. Therefore, it is essential to maintain adequate metabolic control to prevent further complications.