Plateau Pressure: Plateau Pressure (Pplat) or Alveolar Pressure is detected upon activation of an Inflation Hold or Inspiratory Pause control. The exhalation valve is kept in a closed position and the volume is held in the lungs. For clinical purposes, the plateau pressure is the same as the alveolar pressure. This measurement provides a means of measuring static lung compliance.

Transairway Pressure (PTA = PIP - Pplat) reflects the pressure required to overcome airway resistance. Bronchospasm, airway secretions, and other types of airway obstructions are verified from an increase in the transairway pressure (PIP-Pplat).

Static compliance is calculated by dividing the volume in the lung by the plateau pressure minus PEEP:

\[C_s = \frac{VT}{P_{\text{plat}} - \text{PEEP}} \]

A Pressure-Volume loop traces changes in pressures and corresponding changes in volume. Inspiration begins from the FRC level and terminates when the preset parameter (volume or pressure) is achieved. The tracing continues during expiration and returns to FRC at end of exhalation. PIP and delivered tidal volume are readily obtained from the Pressure-Volume loop.

Information obtained from a Volume vs. Time scalar graph includes a visual representation of:
1. Inspiratory Tidal Volume
2. Inspiratory Phase
3. Expiratory Phase
4. Inspiratory Time

A Pressure-Volume loop traces changes in pressures and corresponding changes in volume. Inspiration begins from the FRC level and terminates when the preset parameter (volume or pressure) is achieved. The tracing continues during expiration and returns to FRC at end of exhalation. PIP and delivered tidal volume are readily obtained from the Pressure-Volume loop.

Flow Patterns:
- SQUARE
- DECELERATING
- ACCELERATING
- SINE

Components of Inflation Pressure:
1. PIP
2. P_{\text{plat}}/Alveolar Pressure
3. Airway Resistance
4. Defending Pressure

Flow-Volume Loop:
1. PIFR
2. PEFR
3. Tidal Volume
4. End of Expiration and Beginning of Inspiration